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a b s t r a c t 

Periprosthetic joint infections (PJI) are catastrophic complications for patients with implanted megapros- 

theses and pose significant challenges in the management of orthopaedic oncology patients. Despite var- 

ious preventative strategies, with the increasing rate of implanted orthopaedic prostheses, the number 

of PJIs may be increasing. PJIs are associated with a high rate of amputation. Therefore, novel strategies 

to combat bacterial colonization and biofilm formation are required. A promising strategy is the utiliza- 

tion of anti-bacterial coatings on megaprosthetic implants. In this translational review, a brief overview 

of the mechanism of bacterial colonization of implants and biofilm formation will be provided, followed 

by a discussion and classification of major anti-bacterial coatings currently in use and development. In 

addition, current in vitro outcomes, clinical significance, economic importance, evolutionary perspectives, 

and future directions of anti-bacterial coatings will also be discussed. Megaprosthetic anti-bacterial coat- 

ing strategies will help reduce infection rates following the implantation of megaprostheses and would 

positively impact sarcoma care. 

Statement of significance 

This review highlights the clinical challenges and a multitude of potential solutions to combating peri- 

prosthetic join infections in megaprotheses using anti-bacterial coatings. Reducing infection rates follow- 

ing the implantation of megaprostheses would have a major impact on sarcoma care and major trauma 

surgeries that require reconstruction of large skeletal defects. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Background 

Due to the advances in systemic therapy, imaging, surgical tech- 

ique and endoprosthesis technology, limb-salvage surgery (LSS), 

s considered the gold-standard treatment strategy following large 

one resection for benign and malignant tumours [1] . Over the 

ast two decades, the rate of LSS has been increasing, while over- 

ll survival rates and indication for secondary amputation fol- 
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owing LSS resulting from postoperative complications have de- 

reased [2] . In addition, compared to extremity amputation, LSS 

ffers superior limb function and quality of life, without impact- 

ng overall survival [3–7] . However, the incidence of post-operative 

nfection remains high and presents several unique management 

hallenges [8] . Rates of periprosthetic joint infection (PJI) in non- 

ncologic arthroplasty in Western settings, has been estimated to 

e around 1.2–2.2%, [9] while rates of PJI in oncology procedures 

ave been estimated to range from 7%-28% [ 10 , 11 ]. The higher

revalence of infections in LSS is likely multifactorial. Contribut- 

ng factors include local and systemic immunodeficiency result- 

ng from the primary cancer and immunosuppressive therapeutics 
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Fig. 1. Biofilm life cycle. 
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uch as chemotherapy and radiotherapy, longer surgical durations, 

arge surgical incisions, soft-tissue dead space, and use of large 

etallic implants, also known as megaprostheses [ 10 , 12 , 13 ]. Other

isk factors for development of PJI include patient factors, such 

s high BMI and diabetes, and certain anatomic locations, such as 

elvic and tibial prostheses [ 8 , 11 , 13 , 14 ]. Infection of megaprosthe-

es are catastrophic for patients, often requiring lengthy treatment 

ourses, multiple revision surgeries, and are associated with high 

ailure rates, leading to amputation in 30% to 40% of cases [ 8 , 15 ].

JIs also pose a significant economic burden on the health care 

ystem [16] . Current preventative strategies include pre-operative 

kin cleansing and MRSA screening, prophylactic pre- and post- 

perative antibiotics, sterile field prepping and draping, laminar 

irflow operating theatres [ 17 , 18 ]. A potential strategy to address 

he high rates of PJIs and megaprosthetic infections is the intro- 

uction of anti-microbial coatings on the surface of implants [19] . 

n this review we will first provide an overview of important con- 

iderations related to biofilm formation and PJIs, provide a sum- 

ary of the major classes of antimicrobial coatings, and describe 

he current clinical applications of these coatings. 

. Bacterial colonization of implants and biofilm formation 

For bacterial colonies to become established on implants, a 

hreshold infectious dose of bacteria is required [20] . This thresh- 

ld dose is dependent upon the bacterial virulence, host immune 

esponse, and amount of necrotic tissue available for bacterial col- 

nization [15] . Once implants are introduced in vivo , proteins and 

lycoproteins (such as complement, albumin, fibronectin, fibrino- 

en, laminin, collagen, and von Willebrand factor) followed sec- 

ndarily by polysaccharides, adsorb to the surface of the implant, 

reating a layer called the conditioning film ( Fig. 1 -A) [21–24] . At

his stage, there is a competition between host eukaryotic cells and 

lanktonic bacteria to colonize the implant areas covered with the 

onditioning film. Adhesion of planktonic bacteria to the implant 

urface is influenced by the implant material, implant surface to- 

ography, local temperature, pressure, and bacterial cell wall prop- 

rties [ 22 , 25 , 26 ]. At this stage antibiotics are effective at inhibiting

nd decreasing the number of planktonic bacteria to prevent PJIs, 

owever, once bacteria deposit upon the conditioning film and cre- 

te a biofilm, they become highly resistant to antibiotic therapy 

ue to protection provided by the biofilm architecture, and may 

equire implant removal. At time of revision surgery for infection, 
2 
urgeons are unable to reliably remove the entire biofilm. This of- 

en necessitates physical removal of the implant, leading to more 

one loss and patient morbidity [27] . 

Biofilm formation occurs in different stages. Initially, planktonic 

acteria start to reversibly adhere to the conditioning film through 

an der Waals forces, hydrophobic and electrostatic interactions, 

nd finally protein adhesions ( Fig. 1 -B) [21] . Bacterial appendages 

uch as flagella, pili, fimbriae, and glycocalyx help the bacteria 

dhere firmly to the surface [28–31] . In the second stage, the 

dhered bacteria start to form microcolonies and produce extra- 

ellular polymeric substances (EPS) matrix ( Fig. 1 -C). Initially the 

PS mostly consists of extracellular DNA (eDNA), however, in later 

tages polysaccharides and structural proteins become more preva- 

ent [32] . Through quorum sensing and cell-cell interactions, bac- 

eria interact with each other and further proliferate and enhance 

he EPS matrix leading to the formation of the mature biofilm 

 Fig. 1 -D/E) [ 33 , 34 ]. Upon maturation of the biofilm, the main body

tarts to release planktonic bacteria into the microenvironment, 

urther continuing the cycle and expanding the biofilm coverage 

 Fig. 1 -F) [ 33 , 34 ]. Within different regions of the biofilm there exist

eterogenous bacterial sub-populations, mimicking a multicellular 

rganism, with each sub-population fulfilling a different role in the 

urvival, maintenance, and growth of the entire bacterial biofilm 

ommunity [35] . Various types of bacterial sub-populations have 

een recognized, including metabolically dormant sub-populations 

esiding deep within anoxic regions of the biofilm resistant to an- 

ibiotics, structural sub-populations, and shared resource produc- 

ng sub-populations [35] . Each of these subpopulation within the 

iofilm contributes to the various strategies that confers antibacte- 

ial resistance to the bacterial population. Some of these strategies 

nclude production of protective capsules or glycocalyx, production 

f anti-biotic degrading/detoxifying enzymes and efflux pumps, 

uorum signalling, and heterogeneity in metabolism, growth rate, 

nd genetic adaptations within the subpopulations in response to 

ntibiotic stress allowing for the survival of persister cells [ 36 , 37 ]. 

. Classification of periprosthetic joint infection 

Diagnosis of PJI remains difficult, with current strategies utiliz- 

ng a combination of serum and synovial biochemical and micro- 

iological parameters [ 38 , 39,40 ]. There are different classifications 

f PJI in the literature [41–43] . Generally, PJI can be classified as 

ollows: [42] 
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Table 1 

Desirable properties of anti-bacterial coating of megaprostheses. 

Coating Properties 

1. Biocompatibility and absence of local and systemic toxicity 

2. Efficacious anti-bacterial activity 

3. Durable anti-bacterial activity 

4. Prevention of any compromises in fixation efficacy of the implant 

5. Does not compromise implant mechanical stress and strain resistance properties 

6. Lack of detrimental effects on bone healing and tissue integration 

7. Lack of pro-tumorigenic effects 

8. Cost-effectiveness 
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• Early Infections : infections that develop less than 3 months 

post-operatively. 

• Delayed Infections : infections occurring between 3 to 24 

months post-operatively. 

• Late Infections : infections occurring more than 24 months 

post-operatively. 

Early infections are typically caused by virulent organisms, such 

s Staphylococcus aureus and some gram-negative bacilli. These 

ypically present acutely with erythrocyte sedimentation rate (ESR) 

levation, joint pain, swelling, redness, and fever [ 11 , 42 ]. However, 

elayed infections are typically caused by less virulent species such 

s coagulase negative Staphylococci or Cutibacterium acnes , mani- 

esting in a subtle manner with persistent bone pain and radio- 

raphic signs of implant loosening [42] . Delayed infections are 

ore difficult to detect as they can mimic aseptic failure [42] . Early 

nd delayed PJI infections are typically caused by bacterial seeding 

f the implant intra-operatively [41–43] . However, late infections 

ccurring after 24 months are commonly caused by hematogenous 

pread of bacteria from skin, respiratory tract, dental, or genitouri- 

ary infections [ 16 , 42 , 43 ]. 

. Summary of major anti-microbial coatings 

In addition to traditional practices such as creating a sterile op- 

rating room environment and use of local and systemic antibi- 

tic therapy, numerous novel strategies have been proposed to ad- 

ress PJIs. These include use of bacteriophages targeting specific 

acteria, use of pre-operative vaccines targeted at common bac- 

erial culprits, and implant surface modifications [ 26 , 44–46 ]. This 

eview will focus on the surface modification strategies that pre- 

ent bacterial adhesion, colonization, and proliferation. As a result 

f high rates of PJIs in LSS surgery, bacteria-resistant megapros- 

heses would be a highly valuable addition to the armamentarium 

f orthopaedic surgeons. Some desirable features of anti-bacterial 

oatings of megaprostheses are demonstrated in Table 1 . A criti- 

al consideration in the design of orthopaedic antibacterial coat- 

ngs is to ensure the implant inhibits bacterial adhesion while not 

mpairing osseointegration or osteogenesis [47] . However it should 

lso be noted that only certain parts of the megaprosthetic implant 

sually needs to promote osseointegration, while for the rest of the 

mplant anti-bacterial properties can dominate. 

Broadly, implant coatings can be classified into three major cat- 

gories; (A) passive anti-adhesive (anti-fouling) modifications that 

ely on repulsion of microbes, (B) active antimicrobial approaches 

hat attempt to kill the microorganism, and (C) approaches that af- 

ect biofilm architecture, which focus on reducing biofilm virulence 

actors ( Fig. 2 ) [ 4 8 , 4 9 ]. 

.1. Passive anti-adhesive coating / anti-fouling 

There are various passive strategies to prevent adhesion of bac- 

erial species to the implant surfaces. Below we discuss these ma- 

or passive strategies that have been studied: 
3 
.1.1. Type of implant alloy 

The two major types of megaprostheic implant alloys in clini- 

al use are cobalt-chromium (Co-Cr) and titanium [50] . Both ani- 

al studies and clinical data have demonstrated that Co-Cr alloys 

ave higher rates of PJIs compared to titanium alloys [50–52] . A 

otential explanation is the observation is that Co-Cr alloys lead to 

n inhibition of the local innate immune response, including a de- 

ciency in the local monocyte-macrophage system and impaired 

espiratory burst of neutrophils [50–52] . Another potential con- 

ributing factor is that Co-Cr alloys have lower bio-compatibility 

ompared to titanium alloys, leading to impaired tissue integration 

nd opportunity for being seeded by planktonic bacteria [50] . Fur- 

hermore, titanium implants have been shown to have lower rates 

f biofilm formation, compared to Co-Cr implants [53] . 

Surprisingly, a recent study on spinal implants compared Co-Cr 

lloy with titanium implants and showed that Co-Cr implants sup- 

ressed S. aureus and Propionibacterium acnes proliferation and re- 

uced micro-organism survival compared to titanium implants, in 

oth in vitro and in vivo pre-clinical studies [54] . Therefore, further 

tudies are required to compare these two alloy types in preven- 

ion of PJIs. 

.1.2. Polymer coatings 

Hydrophilic polymeric brushes – i.e. highly hydrated poly- 

ers, can reduce protein adsorption, conditioning layer forma- 

ion, and bacterial adhesion to the implant surface [47] . Polyethy- 

ene glycol (PEG) and polyethylene oxide (PEO) are frequently 

sed for this purpose. For example, titanium coated with PEGy- 

ated titanium-binding peptides (TBPs) has been shown to im- 

air fibronectin adsorption and S. aureus colonization [ 55 , 56 ]. An- 

ther highly hydrophilic polymer coating for titanium implants is 

oly(methacrylic acid) (P(MAA)). Adhesion of S. epidermidis and S. 

ureus to P(MAA)-modified titanium is about 3-4 times less than 

ure titanium. However, a major limitation of hydrophilic poly- 

eric brushes is that they prevent the attachment of osteoblasts 

 57 , 58 ]. This raises caution for the utilization of these coatings on

rthopaedic implants. 

A promising biocompatible polymeric coating that selectively 

mpairs bacterial adhesion while enhancing osteoblast function, 

s chitosan [59] . Chitosan has demonstrated anti-bacterial activity 

gainst both gram-positive and gram-negative organisms [60] . Due 

o its cationic charge, it interacts with the negatively charged bac- 

erial cell wall leading to bacterial death. It has also been shown 

o impair bacterial DNA and RNA synthesis [61] . Titanium coated 

ith chitosan and polyanionic hyaluronic acid has been shown to 

revent bacterial adhesion and enhance osteoblast proliferation in 

itro ( Fig. 3 ) [59] . In addition, conjugating a RGD peptide (Arg-Gly- 

sp) motif to the chitosan coating can further enhance osteoblast 

inding, without affecting bacterial adhesion [62] . A molybdenum 

iselenide chitosan titanium implant has been shown to decrease 

treptococcus mutans infection in dental implants [63] . Another ex- 

mple is a multi-layer biopolymer of chitosan and pectin nanocom- 

osite with silver nanoparticles, that has demonstrated anti S. au- 

eus proliferation and adhesion activity. 



J.R. Lex, R. Koucheki, N.A. Stavropoulos et al. Acta Biomaterialia xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: ACTBIO [m5G; December 15, 2021;16:26 ] 

Fig. 2. Major categories of anti-microbial coatings. 

Fig. 3. A) Pure titanium in S. aureus suspension B) Titanium coated with five layers of chitosan and hyaluronic acid in S. aureus suspension. C) Osteoblast proliferation on 

pristine titanium D) Osteoblast proliferation on titanium coated with five layers of chitosan and hyaluronic acid. Figures A/B scale bar = 10 μm; figures C/D scale bar = 100 

μm. Reproduced with permission [59] . 
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Another class of polymeric coatings are the Defensive An- 

ibacterial Coating (DAC®), these hydrogel coatings are made of 

ovalently linked hyaluronan and poly-D,L-lactide, and can pro- 

ect implant material as an effective barrier. [ 64 , 65 ]. These hy-

rogels can be combined with antibiotics at the time of im- 

lantation to increase protection against bacterial colonization 

64] . 
4 
.1.3. Modification of implant physiochemical surface properties 

By altering the surface characteristics such as roughness, hy- 

rophobicity, and surface energy, bacterial adhesion may be inhib- 

ted [49] . For example, it has been demonstrated that ultraviolet 

UV) light irradiation of titanium dioxide, increases its spontaneous 

ettability, resulting in inhibition of bacterial adhesion while pre- 

erving surface osteogenesis on titanium alloy implants [ 49 , 66 , 67 ].
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 fascinating modification of surface properties is patterned sur- 

ace topography changes. Various natural surfaces such as shark 

nd worm skin, lotus and taro leaves, and butterfly wings have in- 

rinsic anti-adhesive properties [ 68 , 69 ]. By mimicking these nano 

nd micro-structures, implant surfaces can be fabricated that pre- 

ent bacterial adhesion. [ 68 , 69 ]. These designs can be achieved by

ithography or hydrothermal treatments to create nanostructured 

ioinspired geometries [70] . Superhydrophobic anti-adhesive sur- 

aces can be obtained by combining patterned micro/nano scaled 

urface topographies with hydrophobic chemical moieties [48] . For 

xample, hydrophobic fluoroalkyls have been attached to nanos- 

ructured TiO2 surfaces, creating a superhydrophobic implant sur- 

ace that reduced S. aureus adhesion, however this may also come 

t the cost of reduced osteoblast adhesion and osseointegration 

71] . 

Another example of physiochemical modification strategies in- 

lude altering the crystalline structure of the implant oxide layer; 

t has been previously demonstrated that modifying the crystalline 

natase titanium oxide layer significantly reduces bacterial attach- 

ent. [72] . Most of these strategies are in pre-clinical stages. 

.1.4. Biosurfactants 

Biosurfactants are microbial amphiphilic polymers that exhibit 

mulsifying activity [73] . Biosurfactants have been extracted from 

arious bacterial species to inhibit biofilm formation, for exam- 

le Bacillus subtilis and Bacillus licheniformis produce lipopeptide 

iosurfactants capable of reducing Escherichia coli and S. aureus 

iofilm formation on polystyrene surfaces by 97% and 90%, respec- 

ively [74] . Rhamnolipid biosurfactant can be physically adsorbed 

n titanium discs. This has been tested on several different com- 

ercially available dental implant surfaces and was found to be 

ffective in reducing Staphylococcal biofilm formation [75] . Biosur- 

actants are biodegradable, reduce toxicity, are biocompatible, and 

ffective at a wide range of temperatures and different environ- 

ental pHs. These agents are at a pre-clinical stage [73] . 

.2. Active anti-microbial strategies 

A common approach to inhibit biofilm formation is modifying 

urfaces with antibacterial agents, which are released over time. 

hese agents can be inorganic such as metal ions, or organic coat- 

ngs such as antibiotic impregnated implants. 

.2.1. In-organic coatings–transition metals 

Antimicrobial toxicity of transition metals, is a result of four 

ajor chemical processes, including coordination chemistry, hard–

oft acid base (HSAB) theory, reduction potential, and speciation 

76] . Through coordination bonding, metal ions bond to donor 

toms such oxygen, nitrogen, or sulfur. [76] . HSAB predicts metal 

eactivity, for example, soft acids and borderline acids such as sil- 

er, copper, and zinc associated with soft bases such as sulph- 

ydryl groups (-SH) [77] . Fig. 4 displays some transition metal 

ffinities for different protein moieties. 

Another important property of metal ions is their ability to 

artake in redox reactions [76] . Furthermore, metal ions exist in 

ifferent ionic states depending on the environmental conditions 

.g. Cu 

+ and Cu 

2 + (speciation) [76] . These various properties al- 

ow metal ions to interfere with bacterial machinery and ultimately 

ead to toxicity. 

Silver, zinc, and copper are common transition metals used in 

rosthetic surface coatings and will be discussed further. 

.2.1.1. Silver . Silver coating has attracted a great deal of interest 

78] . Silver has broad, long-lasting antimicrobial activity against 

acteria, fungi, protozoa, and even certain viruses [79] . Active silver 

Ag + ) can directly damage cell membranes leading to membrane 
5 
erforations. Perforations lead to loss of nutrients and cellular 

omponents [80] . Silver also disrupts the electron transport chain 

ue to its affinity for the sulfhydryl and thiol groups (SH), im- 

airing enzyme functions, which increases reactive oxygen species 

ROS) generation ( Fig. 5 ) [81] . Additionally, silver and other tran- 

ition metals can displace bacterial innate catalytic and structural 

etals further impairing cellular function [76] . Silver may also 

imit transcription and translation by binding to nucleosides, as 

ell as causing DNA breaks [ 76 , 82 ]. Silver coating can be divided

nto two major types; ionic silver such as silver nitrates or silver 

hlorides in solution, or colloidal silver nanoparticles [83–85] . Sil- 

er nanoparticles have a higher antimicrobial efficacy [ 83 , 84 ]. 

Silver surface modification and coating of orthopaedic im- 

lants can be done using various strategies including anodiza- 

ion, galvanic electroplating, magnetron sputtering, and silanization 

 Table 2 ) [86] . 

Silver has also been loaded into PLGA coatings for titanium im- 

lants leading to a reduction of survival of methicillin-resistant S. 

ureus (MRSA) and Pseudomonas aeruginosa in a rabbit orthope- 

ic implant infection model, while displaying osteo-inductive ac- 

ivity [92] . In mouse models silver coating of titanium-aluminum- 

iobium implants prevented perioperative infections and pre- 

ented infections after a challenge with 2 × 10 6 CFU of S. epider- 

idis [93] . The same implant combined with systemic daptomycin 

rophylaxis was also able to prevent 100% of S. aureus infections 

93] . Compared to other antimicrobial metals, silver has the high- 

st antibacterial activity and the highest associated eukaryotic cy- 

otoxicity [94] . Of note, there have been reports of bacterial re- 

istance to silver in clinical isolates; [95] . however, silver coated 

mplant-related bacterial resistance has yet to be reported. As sil- 

er coated implants are being utilized more in clinical settings the 

ikelihood of evolution of silver resistance increases. See evolution- 

ry lens section. 

.2.1.2. Zinc. In vitro studies have suggested that titanium-zinc 

oatings may be a suitable candidate for orthopedic and dental 

mplants, as they have strong antibacterial activity, and biocom- 

atibility [96–98] . In addition, zinc-implanted titanium has been 

hown to have osteogenic activity [97] . 

.2.1.3. Copper . Copper also has antimicrobial activity [99] . Simi- 

ar to silver, copper disrupts the bacterial membrane, leading to 

ell rupture and loss of membrane potential [99] . Additionally, cop- 

er induces the production of ROS leading to further cellular dam- 

ge [99] . In an in vitro study of orthopaedic implants made of 

itanium-copper-nitride coatings, S. epidermidis growth was com- 

letely inhibited while osteoblast colonization was favoured [100] . 

n important consideration is toxicity of antimicrobial metals to 

he eukaryotic cells [101] . It has been suggested that copper- 

itanium compounds may be superior to other antimicrobial metals 

uch as silver, zinc, aluminum, and cobalt, as they have antimicro- 

ial activity and a relatively lower degree of toxicity towards hu- 

an cells [ 102 , 103 ]. 

An in vitro study has demonstrated that combinatorial therapy 

ith silver, zinc, copper, and other transition-metal, has shown 

ynergistic antimicrobial function compared to each individual 

etal alone. In addition, the combinatorial application may have 

ecreased cytotoxicity due to lowered overall minimum inhibitory 

oncentration for each metal by the proper formulation of syner- 

istic metals. This leads to effective therapies that are not con- 

entrated enough to damage eukaryotic cells while synergistically 

orking together to inhibit bacterial proliferation [ 104 , 105 ]. 

.2.2. In-organic coatings–non-metals 

.2.2.1. Iodine. A promising field is iodine coating of titanium al- 

oys [106] . Iodine-supported titanium implants have effective anti- 
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Fig. 4. Hard–soft acid base (HSAB) theory predicts the selectivity of transition metal ions for biological donor ligands – Soft acids such as Cu + and Ag + have affinity for soft 

bases such as thiol containing groups and borderline acids such as Zn 3 + and Cu 2 + have affinity for borderline bases such as imidazole moieties. 

Fig. 5. Mechanism of action of silver’s anti-bacterial activity – shown in the context of S. aureus. 

6 
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Table 2 

Techniques for coating prostheses with silver. 

Strategies Description 

Anodization Adsorption of aqueous ionic silver onto titanium implants using high voltages, leading to the formation of an oxide layer. This strategy leads 

to formation of pits on the titanium implant surface that serve as “silver release reservoirs” [86] . This method is a surface modification and 

not a true coating strategy because majority of the silver is gradually released in tissue leaving a behind pure titanium implant [86] . 

Galvanic 

Electroplating 

In this strategy high quantities of high-purity silver are deposited on the megaprostheses titanium alloy by galvanization [87] . 

These coatings can be pH sensitive and increase silver ion release in response to local acidosis caused by bacteria [87] . Additionally, increase 

in silver release caused by low pH will be visually noticeable as a colour change in future revision surgeries [87] . 

Magnetron 

sputtering 

This is a physical vapor deposition (PVD) coating strategy that uses a strong magnetic field and vaporized silver to bombard the prosthesis 

surface in a vacuum [ 86 , 88 , 89 ]. 

Nanoparticle 

Silanization 

Silanization is a method that can be used to covalently coat titanium, hydroxyapatite, and other metal surfaces with nanoparticles using 

silicon [ 90 , 91 ]. 
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icrobial properties against S. aureus, P. aeruginosa , MRSA, and 

andida Albicans [107] . Iodine-supported titanium implants have 

een shown to prevent and treat infection in patient with com- 

romised immune systems or active PJIs, without any clinically de- 

ectable cytotoxic or adverse effects in over two-hundred patients 

ith an average of 18 months of follow up [108] . Of note, even

fter one year, the amount of iodine on external fixation pins re- 

ained about 20-30% of the initial volume, indicating long-term 

tability of the coating [108] . 

.2.2.2. Selenium . Another area of research is the use of selenium 

anoparticles as anti-infective implant coatings for orthopedic im- 

lants. It is hypothesized that selenium kills bacteria by reacting 

ith ROS [109] . In vitro and in vivo studies have demonstrated 

elenium nanoparticles are effective in preventing MRSA and S. 

pidermidis biofilm formation [110] . Selenium does not inhibit os- 

eoblast function while inhibiting biofilm formation [111] . 

.2.2.3. Nitric oxide (NO). NO was first shown to disrupt biofilm 

ormation by modulating c-di-GMP levels in P. aeruginosa [112] . An 

n vitro study has shown NO-releasing titanium coatings on or- 

hopaedic implants have been able to achieve maximum antimi- 

robial efficacy with minimum cytotoxicity to human primary os- 

eoblasts [113] . These implants are currently in preclinical testing. 

.2.2.4. Antiseptics. Antiseptic coatings are another potential bac- 

ericidal coating strategy. and chloroxylenol coatings have been 

emonstrated to reduced external fixator pin tract infections, in a 

oat model [114] . In a rat model, chlorhexidine-coated implants re- 

uced the overall bacterial colonisation, reduced osteolysis and in- 

reased the radiographic union. However, when the chlorhexidine- 

oated implant was introduced into a sterile wound, non-union in- 

reased [115] . This may be attributed to chlorohexidine inducing 

 local inflammatory response leading to decreased osteoconduc- 

ive effects, contributing to non-union [116] . More studies are re- 

uired to elucidate the biologic effects of antiseptic coatings in or- 

hopaedic implants. 

.2.3. Organic coatings 

.2.3.1. Antibiotic coated prostheses. Antibiotics can be adsorbed 

nto the titanium surface of the prosthesis or be impregnated in 

one cements [48] . To coat prostheses with antibiotics, biodegrad- 

ble materials are used to coat the surface of titanium. For exam- 

le poly-lactic-co-glycolic acid (PLGA) and poly(D,l-lactide) (PDLLA) 

olymers can be used to coat the implant surface [117–119] . More 

ecently, a degradable PLGA gentamicin-loaded coating for hydrox- 

apatite (HA)-coated cementless hip prostheses was developed and 

hown to significantly reduce rates of infection compared to HA- 

oated implants without gentamicin in rabbit models [117] . Bone 

ements are also commonly impregnated with various antibiotics, 

ost commonly gentamicin, tobramycin, or a combination of gen- 

amicin and other antibiotics such as vancomycin [ 48 , 120–122 ]. 
7 
.2.3.2. Antimicrobial peptides. Antimicrobial peptides are effector 

roteins produced by a wide range of organisms, from prokaryotes 

o eukaryotic. Another strategy to counteract bacterial colonization 

s using antimicrobial peptide coatings. An example is a titanium 

mplant coated with GL13K antimicrobial peptide, which is a pro- 

ein derived from the parotid gland that has bactericidal and bac- 

eriostatic properties [123] . Another study used a layer-by-layer as- 

embly of polymer thin films with ponericin G1, an antimicrobial 

eptide with strong activity against S. aureus , and showed inhibi- 

ion of adhesion and biofilm formation [124] . Antimicrobial pep- 

ides are at a pre-clinical stage. 

.2.3.3. Bacteriophages. Another area of research is investigating 

ttaching bacteriophages to implant surfaces. For this strategy, 

hage susceptibility testing must be done as phages have a nar- 

ow spectrum of activity [45] . Strengths of bacteriophage-implants 

nclude the limited ability of bacteria to develop resistance, auto- 

osing depending on number of bacterial targets, low toxicity, min- 

mal disruption of the commensal flora, lack of cross-resistance to 

ntibiotics, and biofilm clearance [125] . Bacteriophage-coated im- 

lants are at an early clinical stage. 

.3. Strategies to disrupt biofilm architecture 

.3.1. Biofilm degrading enzymes 

Certain enzymes are capable of cleaving and disrupting biofilm 

PS matrix. These enzymes can be attached to coating surfaces to 

nhibit biofilm formation. For example, Dispersin B is bacterial en- 

yme able to degrade poly-N-acetylglucosamine (pNAG), which are 

 component of the biofilm matrix [126] . A coating has been devel- 

ped via a layer-by-layer deposition of Dispersin B on the surface 

f a polymer [126] . The in vitro study demonstrated that Dispersin 

 coating was able to inhibit S. epidermidis biofilm formation [126] . 

ther glycosidases being investigated for their enzymatic activity 

gainst biofilms include alginate lyase, amylases, cellulases, and N- 

lycanases [127] . Another enzyme that is being examined for its 

iofilm disrupting capability is DNAse I which is able to degrade 

xtracellular biofilm DNA [128] . Coating with DNase I has been 

hown to reduce bacterial adhesion and biofilm formation, with- 

ut affecting mammalian cell adhesion and proliferation. [128] . A 

nique property of DNAse I is its ability to degrade biofilms from 

 wide range of bacterial species. Proteases are also able to dis- 

upt biofilms, however these are less studied. An example of a pro- 

ease capable of biofilm disruption is subtilisins, a serine protease 

ommonly used in industry [127] . These strategies are currently in 

arly pre-clinical stages. 

.3.2. Quorum sensing quenching 

Bacterial cells communicate both intra-species and inter-species 

ia quorum signalling molecules. Using quorum sensing, bacteria 

an orchestrate the development and expansion of biofilm EPS ma- 

rix [129] . Quorum sensing quenching enzymes can inhibit bac- 

erial communication and disrupt biofilm formation. One study 
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eveloped a coating using PEG-based coating with covalent in- 

orporation of a quorum sensing inhibitor, 5-Methylene-1-(prop- 

-enoyl)-4-(2-fluorophen-yl)-dihydropyrrol-2-one (DHP), resulting 

n reduced cell attachment and biofilm formation [130] . Quorum 

ensing quenching strategies are currently in development for var- 

ous medical devices such as catheters, dressings, contact lenses, 

nd implantable devices [131] . These strategies are currently in 

arly pre-clinical stages. 

. Comparison of anti-microbial coating strategies 

Although significant advances and innovations have been made 

n the field of prosthesis coatings, currently the literature is lack- 

ng in quantitative comparative studies assessing the efficacy, tox- 

city, and durability of major antimicrobial coatings against each 

ther. Furthermore, there is a paucity of clinical evidence for many 

f the previously discussed coatings. In this section, we will at- 

empt to briefly compare some anti-microbial classes with the lim- 

ted amount of comparative literature available and provide some 

ecommendations for future study design. 

Generally, in-organic coatings are more stable and less likely 

o induce anti-microbial resistance as compared to organic com- 

ounds. However, this usually comes at the expense of increased 

ocal toxicity to human tissue and potentially reduced osseointe- 

ration. As discussed later, the solution may be a synergistic and 

ombinatorial application of these two coating classes. 

Active and passive antimicrobial coatings strategies have been 

ompared in the context of central venous catheters (CVC), in vitro 

132] . While active antimicrobial coating strategies have shown 

ore broad-spectrum anti-microbial activity, in the context of 

linically relevant organisms comparable activity against gram- 

ositive, gram-negative bacteria, and Candida species, have been 

bserved by both coatings [132] . 

Another critical concern is the durability of coatings. Non- 

ovalently adsorbed antibacterial coatings are chemically more sta- 

le but less firm and are more likely to separate from the coatings. 

hereas chemical coating methods that covalently bond antibi- 

tics to implant surfaces lose efficacy over time and become less 

table [133] . As such, attempts are being made to create implant 

oating surfaces that have long-lasting renewable antibacterial ef- 

cacy with robust stability and biocompatibility [133] 

Going forward, comparative studies need to assess coating an- 

ibacterial efficacy, osseointegration potential, and durability for 

arious coatings classes. Therefore, standardized assays to compare 

oatings are required. For example, some well-studied in vitro as- 

ays that can be utilized to compare antibacterial efficacy of vari- 

us coatings include: [134] 

1. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium 

bromide) Assay 

2. Optical Density (OD) 600 Assay 

3. Disk diffusion assay 

4. Colony Formation with Incubation in Solution Assay 

5. Colony Formation on Soaked Coated Disks 

For a review on standardised antibacterial material testing 

ethods for coatings see Cunliffe et al. (2021) [135] . 

. Current clinical outcomes 

Despite adaptions to prosthesis design, surgical technique and 

perating room design, the rate of infection has remained rela- 

ively static. Although there are many potential areas for pros- 

hesis surface treatment, as highlighted above, much of the lit- 

rature evaluating clinical outcomes of anti-bacterial and anti- 

iofilm megaprosthetic coatings is focused on silver. Silver-coated 

egaprostheses were first used by Hardes (2006) in an attempt 
8 
o reduce infection rates following LSS. These reports suggested 

hat silver-coated megaprostheses reduced PJI risk, without causing 

oxic serum levels of silver (56.4 parts per billion) [87] . In addition, 

t was shown that there were no signs of local foreign body granu- 

omatous reaction and no signs of systemic toxicity, with normal 

epatic and renal function tests [87] . The same group also per- 

ormed a 5 year prospective study and demonstrated that silver- 

oated prostheses reduced the infection rate in the medium term 

ompared to a historical cohort [136] . Moreover, when infections 

ccurred, management was made easier with silver-coated pros- 

heses compared to the control group [136] . This is a key finding 

hat requires validation, as treatment of PJI with irrigation and im- 

lant retention is significantly less burdensome to the patient and 

ealthcare system than complete prosthesis removal and staged 

xchange. Other studies have identified that the activity of the 

ilver-coating persisted for up to three years, as demonstrated by 

erum silver levels [137] . However, the tolerance of silver pros- 

heses has been in question as there are some reports regarding 

otential consequences, including dermal argyria, ocular argyrosis, 

astroenteritis and/or fever [ 138 , 139 ]. 

Of note, a large study of 394 patients found no significant dif- 

erence between infection rates of silver-coated prostheses and un- 

oated prostheses, when utilized in high-risk patients in standard 

ites in primary bone tumours of the extremities. This may mean 

hat surface treatment with silver “normalizes” the risk of infec- 

ion in high-risk patients to those of low to normal risk, or it may 

eflect that there is no benefit, necessitating the need for more ef- 

ective anti-microbial strategies. As the overall number of patients 

eceiving megaprostheses whom develop infection is low, large co- 

orts of patients will be needed to achieve adequate statistical 

ower. Table 3 displays some of the major clinical studies com- 

aring PJIs in silver coated megaprostheses to uncoated controls. 

Another surface treatment that has been tried clinically on 

egaprostheses is with an antibiotic-loaded hydrogel coating (De- 

ensive Antibacterial Coating – DAC®) in 39 oncological patients 

nd 3 non-oncologic patients. The hydrogel provided a reduction in 

arly surgical site infections without any side effects [150] . DAC®

ydrogel has also been used in combination with a bacteriophage 

or the treatment of a case of catastrophic relapsing S. aureus knee 

egaprosthesis infection [45] . Although ultimately the patient re- 

uired an amputation as a result of other complications, the lo- 

al infection control achieved by the DAC® hydrogel appeared fa- 

orable [45] . This case study also demonstrated the feasibility of 

hage-based coatings [45] . 

. An evolutionary lens 

Since the first eukaryotic cells evolved two billion years ago, 

e have been in an evolutionary arms race with bacteria [151] . 

here is a rapid emergence of multi-drug resistant bacteria around 

he world, which endangers antibiotic efficacy [152] . Additionally, 

here has been a higher prevalence of antibiotic-resistant organ- 

sms in the setting of PJIs [153] . Therefore innovative strategies to 

reat and prevent PJIs are necessary. However, an important con- 

ideration is that the use of a single strategy to fight bacterial in- 

ections applies an insufficient selective pressure on bacteria and 

llows for the evolution of resistant mutants. For example, bacteria 

ave evolved various strategies to resist toxic metals, including re- 

uced uptake, efflux pumps, extracellular and intracellular seques- 

ration strategies, cellular repair, metabolic bypass, and chemical 

odification of metals [76] . 

Utilizing multimodal prevention and therapeutic strategies that 

o not function through the same mechanism of action have the 

ighest potential to terminate bacteria, without allowing for resis- 

ant strains to evolve. We recommend future coatings utilize some 

ombination of anti-adhesion strategies, active bactericidal strate- 
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Table 3 

Studies Evaluating Clinical Outcomes on silver coated megaprostheses. 

Study # Patients Total Rates of PJIs with Silver Coating Total Rates of PJI in Uncoated Control p -value Mean Follow Up 

Hardes [136] 51 5.9% 17.6% 0.062 19 months 

Hussmann [140] 18 5.6% 22% 0.01 12 months 

Wafa [141] 50 11.8% 22.4% 0.033 > 12 months 

Piccioli [142] 17 11.8% 23.1% - 40.7 months 

Donati [143] 38 7.9% 16.7% - 46.5 months 

Hardes [144] 56 8.9% 16.7% 0.247 38 months 

Zajonz [145] 34 40% 57% 0.34 72.8 months 

Streitbuerger [146] 64 9.4% 14.3% - 34.5 months 

Medellin [147] 81 17.4% 19% 0. 869 10.3 years 

Parry [148] 394 12.4% 7.5% 0.154 55 months 

Sambri [149] 29 10.3% 17.5% 0.104 36 months 

Fig. 6. Megaprosthesis with combination anti-microbial coating strategies. 
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ies, and biofilm disruption methods to prevent PJIs ( Fig. 6 ). This 

an be thought of as a multistep defense line against biofilm for- 

ation [154] . While this type of coating system is scarce, effort s 

ave been made in this regard. Some groups have attempted to 

reate polymeric coating backbones that are non-adhesive, pre- 

enting conditioning film formation and bacterial adhesion (first 

ine defense), while being able to be further functionalized with 

mall peptide motifs (RGD) that promote osteoblast adhesion or 

odified to integrate bactericidal releasing agents (second line de- 

ense) or biofilm disrupting agents (third line defense) on top 

f it surface [154–157] . Therefore the solution to a combinatorial 

pproach may be non-adhesive surfaces that are capable of be- 

ng functionalized with further chemical groups and moieties, to 

chieve second and third line defenses. 

. Clinical and economic importance and future directions 

Preventing infection following implantation of an orthopaedic 

mplant is a large and important area of ongoing research. Clin- 

cians and scientists have been focusing on this area due to the 

ignificant effect inf ections have on patients and the healthcare 

ystem. Estimates from the United States calculated that PJIs ac- 
9 
ounted for $1.62 billion in hospital costs [158] . This is largely due 

o the requirement for at least one subsequent operation, increas- 

ng costs by a factor of five [159] . Therefore, advances in implant 

echnology may be significantly cost-effective if they are able to be 

mplemented affordably. Due to the concerns for evolving bacterial 

esistance with liberal use of anti-microbials, a combination ap- 

roach should be considered. However, use of combination strate- 

ies must also consider toxicity to the patient as well as associated 

osts. As described earlier there is a major trade-off between anti- 

acterial coating’s bactericidal efficacy and local eukaryotic cyto- 

oxicity, therefore it is critical to utilize multimodal strategies that 

hile disrupting bacterial life cycle and adhesion, have minimal ef- 

ects on the human host cells. Furthermore, the anti-bacterial coat- 

ng should not impair osteoblast function and effective osseointe- 

ration. 

Regarding all antimicrobial prosthesis coatings, at present the 

ost used strategy is bone cement loaded with antibiotics. How- 

ver, the quality of available clinical evidence is poor and con- 

ensus from the most recent (2018) International Consensus on 

rthopaedic Infections suggest it should only be considered in 

atients at high risk of infection [122] . Patients undergoing 

egaprosthesis implantation following a bone tumour resection 
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re considered at high risk of infection. There is an ongoing ran- 

omized controlled trial (RCT) currently evaluating the effective- 

ess of antibiotic loaded cement (NCT04135170). We were also 

ble to identify an ongoing trial evaluating the effectiveness of 

ingle-stage revision surgery with DAC® hydrogel compared to tra- 

itional two-stage revision without this antimicrobial coating for 

he prevention of re-infection following PJI (NCT04251377). Cus- 

om iodine-coated prostheses developed by a team in Japan have 

lso shown promising results, with a 4.2% rate of re-infection fol- 

owing their implantation. Various implant types were coated and 

sed in different anatomical regions to prevent secondary infec- 

ions [ 160 , 161 ]. 

Several clinical questions remain, for which there is a current 

aucity of literature. Determining the duration that antimicrobial 

oatings remain at a therapeutic level on the implant is impor- 

ant. While some coatings may be effective at preventing infec- 

ion and biofilm formation in vitro , antimicrobial duration in vivo 

eeds to persist long enough to prevent the development of in- 

ection. Some coatings may perform long enough to prevent acute 

nfections, but not chronic infections. Moreover, some coatings act 

roadly, passively preventing against infection from a wide range 

f bacterial pathogens, whereas some coatings are more specific, 

nly activated in the presence of a biofilm, rendering them most 

ffective against certain biofilm-producing pathogens (for example, 

nterococcus, Staphylococcus spp., Streptococcus and Pseudomonas). 

herefore, in the setting of revision surgery for PJI, the specific 

athogen may be a consideration when selecting a coated prosthe- 

is. The clinical indications and risk factors to consider for inserting 

 coated prosthesis need to be determined for all patients receiv- 

ng arthroplasty-type prostheses. Patients undergoing megaprothe- 

is reconstruction are at significantly higher risk of infection than 

he typical joint replacement cohort, therefore, we believe that on- 

oing effort s to ascert ain the optimal coating f or reducing PJIs in

egaprostheses are essential. 

Overall, this review highlighted the multitude of potential solu- 

ions to combating PJIs in megaprotheses. Results of clinical studies 

valuating coated prostheses are encouraging, but further research 

nd technological developments are required. We look forward to 

he results of the ongoing clinical trials for each of the antimicro- 

ial strategies mentioned. As different coatings become available 

n the market, direct comparison between implant-types and de- 

ermining effectiveness over time and against specific bacteria will 

e essential. Reducing infection rates following the implantation of 

egaprostheses would have a significant impact on sarcoma care 

nd major trauma surgeries that require reconstruction of large 

keletal defects. 
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